Việc thực hiện dữ liệu định lượng bằng SPSS khi làm bài luận văn hay làm nghiên cứu khoa học không thể thiếu một bước vô cùng quan trọng đó là phân tích nhân tố khám phá SPSS. Bởi vì khi khi kiểm định một lý thuyết khoa học, bạn cần đánh giá độ tin cậy của thang đo (Cronbach Alpha) và giá trị của thang đo (EFA)
1. Phân tích nhân tố khám phá EFA trong SPSS là gì?
Phân tích nhân tố khám phá (EFA) là một phương pháp phân tích định lượng dùng để rút gọn một tập gồm nhiều biến đo lường phụ thuộc lẫn nhau thành một tập biến ít hơn (gọi là các nhân tố) để chúng có ý nghĩa hơn nhưng vẫn chứa đựng hầu hết nội dung thông tin của tập biến ban đầu(Hair et al. 2009). Nó hướng đến việc khám phá ra cấu trúc cơ bản của một tập hợp các biến có liên quan với nhau.
Phân tích nhân tố khám phá EFA dùng để rút gọn một tập hợp k biến quan sát thành một tập F (với F < k) các nhân tố có ý nghĩa hơn. Trong nghiên cứu, chúng ta thường thu thập được một số lượng biến khá lớn và rất nhiều các biến quan sát trong đó có liên hệ tương quan với nhau.
>>>Tiếp tục xem bài viết tại: http://luanvan24.over-blog.com/tong-quan-ve-phan-tich-nhan-to-kham-pha-efa-trong-spss
#luanvan24 #kham_pha_efa_trong_spss
Nhận xét
Đăng nhận xét